Skip to main content
padlock icon - secure page this page is secure

Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers

Buy Article:

$60.00 + tax (Refund Policy)

Mapping of patterns and spatial distribution of land-use/cover (LULC) has long been based on remotely sensed data. In the recent past, efforts to improve the reliability of LULC maps have seen a proliferation of image classification techniques. Despite these efforts, derived LULC maps are still often judged to be of insufficient quality for operational applications, due to disagreement between generated maps and reference data. In this study we sought to pursue two objectives: first, to test the new-generation multispectral RapidEye imagery classification output using machine-learning random forest (RF) and support vector machines (SVM) classifiers in a heterogeneous coastal landscape; and second, to determine the importance of different RapidEye bands on classification output. Accuracy of the derived thematic maps was assessed by computing confusion matrices of the classifiers’ cover maps with respective independent validation data sets. An overall classification accuracy of 93.07% with a kappa value of 0.92, and 91.80 with a kappa value of 0.92 was achieved using RF and SVM, respectively. In this study, RF and SVM classifiers performed comparatively similarly as demonstrated by the results of McNemer’s test (Z = 1.15). An evaluation of different RapidEye bands using the two classifiers showed that incorporation of the red-edge band has a significant effect on the overall classification accuracy in vegetation cover types. Consequently, pursuit of high classification accuracy using high-spatial resolution imagery on complex landscapes remains paramount.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, 3209, Pietermaritzburg, South Africa

Publication date: May 19, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more