Skip to main content
padlock icon - secure page this page is secure

The performance of vegetation indices for operational monitoring of CORINE vegetation types

Buy Article:

$61.00 + tax (Refund Policy)

Vegetation monitoring has been performed using remotely sensed images to secure food production, prevent fires, and protect natural ecosystems. Recent satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), provide frequent wide-scale coverage in multiple areas of the spectrum, allowing the estimation of a wide range of specialized vegetation indices (VIs), each offering several advantages. It is not, however, clear which VI performs better during operational monitoring of wide-scale vegetation patches, such as CORINE Land Cover (CLC) classes. The aim of this work was to investigate the performance of several VIs in operational monitoring of vegetation condition of CLC vegetation types, using Terra MODIS data. Comparison among the VIs within each CLC class was conducted using the sensitivity ratio, a statistical measure that has not been used to compare VIs and does not require calibration curves between each VI and a biophysical parameter. In addition, the VI’s sensitivity to factors such as the aspect, viewing angle, signal saturation, and partial cloud cover was estimated with correlation analysis in order to identify their operational monitoring ability. Results indicate the enhanced vegetation index as superior for monitoring vegetation condition among CLC types, but not always optimum in performance tests for operational monitoring.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Faculty of Agriculture, Lab of Remote Sensing and GIS, Aristotle University of Thessaloniki, Greece 2: Faculty of Forestry and Natural Environment, Lab of Forest Management and Remote Sensing, Aristotle University of Thessaloniki, Greece 3: Department of Statistics, University of Nebraska, Lincoln, USA

Publication date: May 3, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more