Skip to main content
padlock icon - secure page this page is secure

Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data

Buy Article:

$61.00 + tax (Refund Policy)

Remote sensing plays an important role within the field of forest inventory. Airborne laser scanning (ALS) has become an effective tool for acquiring forest inventory data. In most ALS-based forest inventories, accurately positioned field plots are used in the process of relating ALS data to field-observed biophysical properties. The geo-referencing of these field plots is typically carried out by means of differential global navigation satellite systems (dGNSS), and often relies on logging times of 15–20 min to ensure adequate accuracy under different forest conditions. Terrestrial laser scanning (TLS) has been proposed as a possible tool for collection of field data in forest inventories and can facilitate rapid acquisition of these data. In the present study, a novel method for co-registration of TLS and ALS data by posterior analysis of remote-sensing data – rather than using dGNSS – was proposed and then tested on 71 plots in a boreal forest. The method relies on an initial position obtained with a recreational-grade GPS receiver, in addition to analysis of the ALS and TLS data. First, individual tree positions were derived from the remote-sensing data. A search algorithm was then used to find the best match for the TLS-derived trees among the ALS-derived trees within a search area, defined relative to the initial position. The accuracy of co-registration was assessed by comparison with an accurately measured reference position. With a search radius of 25 m and using low-density ALS data (0.7 points m−2), 82% and 51% of the TLS scans were co-registered with positional errors within 1 m and 0.5 m, respectively. By using ALS data of medium density (7.5 points m−2), 87% and 78% of the scans were co-registered with errors within 1 m and 0.5 m of the reference position, respectively. These results are promising and the method can facilitate rapid acquisition and geo-referencing of field data. Robust methods to identify and handle erroneous matches are, however, required before it is suitable for operational use.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway

Publication date: May 3, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more