Skip to main content
padlock icon - secure page this page is secure

Symbolic target detection in SAR imagery via rotationally invariant-weighted feature extraction

Buy Article:

$60.00 + tax (Refund Policy)

This article introduces the application of a physics-based symbolic image partitioning method to detect targets in synthetic aperture radar (SAR) imagery. ‘Targets’ in this case refer to vehicular objects which produce a distinct radar return pattern, and have spatial characteristics that are known a priori. The proposed Rotationally Invariant Symbolic Histogram (RISH) detection method co-analyses both target and speckle statistics, and significantly reduces computational requirements by partitioning the data into a discrete number of state representations. RISH requires only one pass for robust detection, unlike other SAR detection methods which rely on difference metrics calculated using multiple passes. To improve performance in high-resolution data, RISH uses a weighted feature extraction algorithm to avoid the common requirement of processing each pixel of the image equally. The weighted structure extracts geometrically undefined and rotationally invariant target features. This article details the analysis of 24 experimentally obtained very high-frequency (VHF)-band SAR magnitude images using this novel approach to SAR target detection. In localizing small (~8.4 m2) foliage-concealed targets, without the aid of pre-processing, this method results in high performance characteristics (90% true positive) with a low Type-II error rate of 6.4 false alarms per 1 × 106 m2. With the addition of change detection, RISH lowers the error rate by 85%.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA

Publication date: December 20, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more