Skip to main content
padlock icon - secure page this page is secure

Object class segmentation of massive 3D point clouds of urban areas using point cloud topology

Buy Article:

$60.00 + tax (Refund Policy)

A large number of remote-sensing techniques and image-based photogrammetric approaches allow an efficient generation of massive 3D point clouds of our physical environment. The efficient processing, analysis, exploration, and visualization of massive 3D point clouds constitute challenging tasks for applications, systems, and workflows in disciplines such as urban planning, environmental monitoring, disaster management, and homeland security. We present an approach to segment massive 3D point clouds according to object classes of virtual urban environments including terrain, building, vegetation, water, and infrastructure. The classification relies on analysing the point cloud topology; it does not require per-point attributes or representative training data. The approach is based on an iterative multi-pass processing scheme, where each pass focuses on different topological features and considers already detected object classes from previous passes. To cope with the massive amount of data, out-of-core spatial data structures and graphics processing unit (GPU)-accelerated algorithms are utilized. Classification results are discussed based on a massive 3D point cloud with almost 5 billion points of a city. The results indicate that object-class-enriched 3D point clouds can substantially improve analysis algorithms and applications as well as enhance visualization techniques.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Hasso-Plattner-Institut, Potsdam, Germany

Publication date: December 10, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more