Skip to main content
padlock icon - secure page this page is secure

Assessment of the SeaWinds scatterometer for vegetation phenology monitoring across China

Buy Article:

$55.00 + tax (Refund Policy)

Vegetation phenology tracks plants' lifecycle events, revealing the response of vegetation to global climate changes. Changes in vegetation phenology also influence fluxes of carbon, water, and energy at local and global scales. In this study, we analysed a time series of Ku-band radar backscatter measurements from the SeaWinds scatterometer on board the Quick Scatterometer (QuickSCAT) to examine canopy phenology from 2003 to 2005 across China. The thaw season SeaWinds backscatter and Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) time series were significantly correlated in 20 of the 22 sites (p < 0.05). A weighted curve-fitting method was applied to detect the start of season and end of season from both data sets. The SeaWinds scatterometer generally detected earlier timing of spring leaf-out and later fall senescence than the MODIS LAI data sets. The SeaWinds backscatter detected phenological metrics in 75.85% of mainland China. Similar spatial patterns were observed from the SeaWinds backscatter and MODIS LAI time series; however, the average standard deviation of the scatterometer-detected metrics was lower than that of MODIS LAI products. Overall, the phenological information from the SeaWinds scatterometer could provide an alternative view on the growth dynamics of land-surface vegetation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Centre for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China 2: Department of Geography, University of Missouri, Columbia, MO, 65211, USA

Publication date: 10 August 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more