Skip to main content
padlock icon - secure page this page is secure

Partially supervised hierarchical classification for urban features from lidar data with aerial imagery

Buy Article:

$60.00 + tax (Refund Policy)

Although spatial and spectral resolutions of remotely sensed data have been improved, the usage of multispectral imagery is not sufficient for urban feature classification. This article addresses the problem of automated classification by integrating airborne lidar range data and aerial imagery. In this study, the classification procedure is divided into three phases. We first use the lidar range data to obtain the coarse lidar-based classification results, by which a lidar-driven labelled image and a lidar-driven high-rise object mask are acquired in this phase. Then, at the image-based classification level, we train samples based on the lidar-driven labelled image and conduct maximum likelihood classification experience with the lidar-driven normalized digital surface model as a high-rise object mask. Finally, we propose a knowledge-based cross-validation (KBCV) for misclassification between the lidar-based classification results and the image-based classification results. Experimental results are presented to demonstrate the benefits of the training sample selection of the lidar-driven labelled image, using the lidar-driven high-rise object mask, and the greater classification accuracy of the KBCV.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Geography and Environmental Management,University of Waterloo, Waterloo,Ontario, CanadaN2L 3G1, 2: School of Remote Sensing Information and Engineering,Wuhan University, Wuhan,430079, China 3: Changjiang Spatial Information Technology Engineering Company,Changjiang Institute of Survey Planning Design and Research, Wuhan,430010, China

Publication date: January 10, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more