Skip to main content
padlock icon - secure page this page is secure

Accounting for temporal contextual information in land-cover classification with multi-sensor SAR data

Buy Article:

$63.00 + tax (Refund Policy)

This paper investigates the potential of accounting for temporal contextual information in order to improve the accuracy of land-cover classification in summer with Synthetic Aperture Radar (SAR) data. Bi-temporal multi-sensor datasets collected in the Nonsan area of Korea were used to illustrate this approach. Multi-sensor data, including Japanese Earth Resources Satellite (JERS)-1 Optical Sensor (OPS) data acquired in April, and three different SAR sensor datasets from European Resource Satellite (ERS)-2, JERS-1, and Radarsat-1 obtained in the following July, were used for supervised classification in July. By comparing the classification result in April with a training set in July, transition probabilities between land-cover classes in the April-July period were empirically estimated and regarded as the temporal contextual information. A tau model is applied as a main integration methodology to combine multiple SAR data and the temporal contextual information. From the evaluation of the classification results in terms of accuracy statistics, using multiple SAR sensor data showed an increase of about 29% in overall accuracy compared with the case of single SAR sensor data. The incorporation of temporal contextual information into scattering information greatly contributed to a significant improvement of about 25% in overall accuracy over multiple SAR sensor integration only, and showed the best discrimination capability.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Geoinformatic Engineering, Inha University, Nam-gu, Incheon, Korea

Publication date: March 1, 2010

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more