Skip to main content
padlock icon - secure page this page is secure

Border feature detection and adaptation algorithm for consensual decision making

Buy Article:

$60.00 + tax (Refund Policy)

The performance of classification algorithms is heavily related to the quality of the training samples in supervised learning. Conventional statistical classifiers assume that data have a specific distribution. Such assumptions may not be valid for real world data. Additionally, enough training samples are required for every class to make a proper estimation of parameters to represent distribution functions. In general, there is a limited number of training samples in remote sensing. Therefore, classification algorithms should be robust with various types of training sample sets to achieve sufficient generalization performance. In this study, a new classification algorithm called border feature detection and adaptation (BFDA) is used to partition the feature space by taking into account some geometric considerations to support maximum margins between different class borders via some reference vectors called border features. The performance of the BFDA is related to the initialization of the border features during the border feature detection stage, and the input ordering of the training samples during the adaptation process. These dependencies cause relatively biased decisions. Therefore, consensual strategy with cross validation can be applied to improve the generalization performance. The resulting process is called consensual BFDA (C-BFDA).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey 2: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-1285, USA

Publication date: January 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more