Skip to main content
padlock icon - secure page this page is secure

Multisensor comparison of NDVI for a semi-arid environment in Spain

Buy Article:

$61.00 + tax (Refund Policy)

The joint use of multiresolution sensors from different satellites offers many opportunities to describe vegetation and its dynamics. This paper introduces the concept of a virtual constellation (defined as an ensemble of all Earth Observation satellites in orbit that satisfy common requirements) for agricultural applications and contributes to providing the necessary inter-sensor calibration methodology for spectral reflectances and NDVI. For this purpose, we performed an observational study, comparing reflectances and the Normalized Difference Vegetation Index (NDVI), from near-synchronous image pairs of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), as the reference sensor and Landsat 5 Thematic Mapper (TM), IRS 1C/D LISS-III (LISS), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), QuickBird, and NOAA Advanced Very High-resolution Radiometer (AVHRR). Linear relationships were found for the intercalibration of reflectances and NDVI from one sensor to another, for all sensors, provided that some spatial aggregation was performed. The main source of data dispersion in our linear cross-sensor translation equations is the geolocation uncertainty inherent in the process of geometric correction. Consequently, spatial aggregation always needs to be performed if (different or the same) sensors are to be used to derive time-series of biogeophysical parameters over heterogeneous areas. The homogenous zone approach developed here is recommended as an excellent tool for deriving robust new cross-sensor relationships, provided that the selected homogeneous crops cover the full NDVI range. The linear cross-sensor relationships derived from one image pair were shown to be valid for the whole season and for all areas with similar vegetation and climate.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Remote Sensing & GIS Unit, Institute for Regional Development, University of Castilla La Mancha, 02071 Albacete, Spain 2: Remote Sensing & GIS Unit, Institute for Regional Development, University of Castilla La Mancha, 02071 Albacete, Spain,ALFAclima Asesoramiento Medioambiental, 02002 Albacete, Spain 3: Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, 46100 Burjasot, Spain

Publication date: January 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more