Skip to main content
padlock icon - secure page this page is secure

Mean shift-based clustering analysis of multispectral remote sensing imagery

Buy Article:

$60.00 + tax (Refund Policy)

In clustering analysis of remote sensing imagery, a commonly held assumption is that the feature space can be modelled as a mixture of Gaussians. However, the assumption is not true for many real data and therefore incorrect classification results are often obtained by parametric methods. Nonparametric methods in feature space analysis can avoid the use of the normality assumption. Arbitrarily structured feature spaces can be analysed only by means of nonparametric methods as these methods do not have embedded assumptions. The mean shift is a basic computational module of the nonparametric technique in pattern recognition. The mean shift procedure can be used to cluster multispectral remote sensing imagery. Earlier clustering techniques based on the mean shift used a single scale over the entire feature space and were not feasible for the analysis of complex multimodal feature spaces. In this paper, we present an adaptive mean shift method in which local scale information is involved. The proposed algorithm can find arbitrary density, size and shape clusters in remote sensing imagery. The method is a simple technique of unsupervised image classification. We demonstrate its advantages in classification accuracy over earlier methods described in this paper.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, 450015 Zhengzhou, China 2: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 100101 Beijing, China

Publication date: January 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more