Skip to main content
padlock icon - secure page this page is secure

Multicomponent image segmentation: a comparative analysis between a hybrid genetic algorithm and self-organizing maps

Buy Article:

$55.00 + tax (Refund Policy)

Image segmentation is an essential process in image analysis. Several methods have been developed to segment multicomponent images and the success of these methods depends on the characteristics of the acquired image and the percentage of imperfections in the process of its acquisition. Many of the segmentation methods are parametric, which means that many parameters need to be computed or provided before the segmentation process, and any method that works on one type of multicomponent image cannot necessarily work on another. In addition, many segmentation methods are supervised, where a priori knowledge is needed, such as the number of classes. To overcome these obstacles, a self-organizing map (SOM), which is an unsupervised nonparametric method, was used to segment four different types of multicomponent images (Landsat, SPOT, IKONOS and CASI), and the results compared to those of a new nonparametric unsupervised genetic algorithm (GA) for image segmentation. To improve the performance of the GA, a hill-climbing process and another random heuristic module were added to escape the local-minima trap and to improve the speed of the GA; the new algorithm is called the hybrid genetic algorithm (HGA). Verification of the results was performed using two different techniques: field verification and the functional model. These verification techniques show that the HGA is more accurate in multicomponent image segmentation than the SOM.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: National Council for Scientific Research, Beirut, Lebanon 2: Universite de Rennes 1, Rennes, France 3: American University of Beirut, Beirut, Lebanon

Publication date: 01 January 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more