Skip to main content
padlock icon - secure page this page is secure

Comparison of local transfer function classifier and radial basis function neural network with and without an exhaustively defined set of classes

Buy Article:

$60.00 + tax (Refund Policy)

The local transfer function classifier (LTF-C) is a new radial basis function (RBF)-like neural network, but it uses an entirely different learning algorithm, so as to achieve the novel ability of locally partitioning the feature space. This paper investigates LTF-C and the RBF neural network with reference to land cover classification with and without an exhaustively defined set of classes using Landsat-5 TM data. Results indicate that LTF-C achieves higher accuracy, usually with fewer hidden units, than the RBF neural network with an exhaustively defined set of classes. LTF-C is more stable than the RBF neural network during classifications of the testing set, including the untrained class. Through the setting of post-classification thresholds on the network's outputs, a well-trained RBF neural network sometimes gives abnormally high output value for an input pattern which represents the untrained class. Meanwhile, a well-trained LTF-C outputs extremely low values all the time under the same circumstances. Therefore, LTF-C may outperform the RBF neural network in detecting or removing the atypical classes that are excluded from the training set, which maybe useful in situations where only interesting types of land cover are selected in the training set, due to high labour costs or difficulties in defining all classes represented in a study area.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications, Chinese Academy of Sciences, and Beijing Normal University, Beijing, PR China

Publication date: January 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more