Skip to main content
padlock icon - secure page this page is secure

The climatological record of clear-sky longwave radiation at the Earth's surface: evidence for water vapour feedback?

Buy Article:

$60.00 + tax (Refund Policy)

An increase in global surface temperature of between 1.4 K and 5.8 K is expected to occur by 2100 due to a doubling of the global concentration of CO2. Associated with this predicted surface warming will be an increase in the downwards longwave (3-100 µm) radiation (F↓) at the Earth's surface. Observations of this quantity on a global scale are almost non-existent. Clear-sky estimates of F↓ can be obtained from radiative transfer calculations using temperature and moisture profiles from radiosoundings. Here long-term (more than 25 years) mean monthly profiles obtained from globally distributed land-based radiosonde stations are subjected to detailed radiative transfer computations and Fourier time-series analysis. The results indicate that over the period 1964-1990, there has been a global increase in the clear-sky longwave flux at the surface. The global trend is approximately +1.7 W m-2 per decade, and there is a strong latitudinal pattern, with greater increases occurring in the tropics and smaller increases at both poles. There are also concomitant increases in precipitable water and the patterns appear to be highly correlated with increases in F↓. Increases in CO2 with time were not included in the calculations and it is estimated that the radiative impact of changes in CO2 on the F↓ trend is ∼20% per decade. A simple model of the dependence of surface air temperature and precipitable water on the downwards clear-sky flux supports the notion that both variables are contributing to increases in F↓. It is suggested that increases in precipitable water represent a positive feedback on F↓.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Norwegian Institute for Air Research, 2027 Kjeller, Norway

Publication date: January 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more