Skip to main content
padlock icon - secure page this page is secure

Satellite estimation of forest carbon using regression models

Buy Article:

$60.00 + tax (Refund Policy)

Periodic monitoring of forest carbon is important, since forest cover is changing rapidly in many parts of the world, and becomes a major source of terrestrial carbon emission that may be one of the main drivers of global climate change. Regression is often used to estimate forest variables (including carbon) using satellite sensor data though a low coefficient of determination (R 2) is apparent and this research was designed to investigate both traditional and alternate regression approaches to increase the magnitude of R 2. The study area was located in southeastern Bangladesh. Data from Landsat Enhanced Thematic Mapper Plus (ETM+) and ground-based forest survey were used. This research explored the use of dummy variables in regression models to increase R 2, while the dummies were set from the optimal stratification of forestland. The finding will heighten the accuracy of forest attribute estimation and help to understand terrestrial carbon dynamics and global climate change.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute of Photogrammetry and Remote Sensing, Dresden University of Technology, 01069 Dresden, Germany 2: Remote Sensing and Landscape Information Systems, Albert-Ludwigs University, 79098 Freiburg, Germany

Publication date: December 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more