Skip to main content
padlock icon - secure page this page is secure

Split-window algorithm for land surface temperature estimation from MSG1-SEVIRI data

Buy Article:

$61.00 + tax (Refund Policy)

This letter addresses the land surface temperature (LST) estimation from the data acquired by the spinning enhanced visible and infra-red imager (SEVIRI) on board the first geostationary satellite meteosat second generation (MSG1) using the generalized split-window algorithm proposed by Wan and Dozier (1996). The generalized split-window algorithm was developed for eight view zenith angles (VZAs) by dividing the LST, the average emissivity (ε) and the column water vapour (W) into several sub-ranges to improve the LST estimating accuracy. The simulated results show that the root mean square errors (RMSEs) increase with VZAs and W, and they are less than 1.0 K for all sub-ranges with the VZA less than 45°, or for the sub-ranges with VZA less than 60° and W less than 3.5 cm. The land surface emissivities (LSEs) and W used in the generalized split-window algorithm were estimated from MSG1-SEVIRI data by the method developed by us in previous studies. The results at the four specific locations show that the LSEs were well derived, and the LSTs estimated from MSG1-SEVIRI data are basically consistent with the ones extracted from MODIS/Terra LST products.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: TRIO/LSIIT (UMR7005)/ENSPS, Parc d'Innovation, BP10413, 67412 Illkirch, France,The Key Lab of Wave Scattering and Remote Sensing Information (MOE), Fudan University, 200433, Shanghai, P. R. China 2: TRIO/LSIIT (UMR7005)/ENSPS, Parc d'Innovation, BP10413, 67412 Illkirch, France,Institute of Geographic Sciences and Natural Resources Research, 100101, Beijing, P. R. China

Publication date: October 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more