Skip to main content
padlock icon - secure page this page is secure

A scheme for ship detection in inhomogeneous regions based on segmentation of SAR images

Buy Article:

$60.00 + tax (Refund Policy)

Ship detection in inhomogeneous regions using synthetic aperture radar (SAR) imagery is usually confronted with the severe heterogeneities of the oceans; this paper proposes a new detection scheme to overcome this problem. At first, an object-oriented segmentation algorithm is employed to partition the whole SAR image into several uniform regions. Then, for each partitioned region within water areas, the Kolmogorov-Smirnov test is applied to select the optimal background distribution model, and ship detection is carried out using the adaptive constant false alarm rate (CFAR) detector based on the selected probability density function. Finally, the detection results of each region are merged. An experiment based on an ENVISAT ASAR image of the Yangtze estuary show that the proposed strategy can effectively deal with heterogeneous scenarios in inhomogenous regions and greatly improves the detection results.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China

Publication date: October 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more