Skip to main content
padlock icon - secure page this page is secure

Reduction of atmospheric and topographic effect on Landsat TM data for forest classification

Buy Article:

$60.00 + tax (Refund Policy)

The incident radiance in forested areas with rugged terrain varies greatly with the changes in solar elevation and azimuth, slope and aspect of the terrain, and the relative position of trees. The geotropic nature must be considered in the course of topographic correction. The Sun-Canopy-Sensor (SCS) model is introduced to substitute the cosine correction in a physical model. We used an atmospheric simulation code, MODTRAN, and a digital elevation model (DEM) to calculate the path radiance, downwards diffuse radiance and two-way transmittance of direct and diffuse light at different altitudes. Based on the atmospheric parameters derived above and the Lambertian assumption, surface reflectance in a forested area was retrieved from Landsat Thematic Mapper (TM) imagery using a revised physical model. Meanwhile, a smoothed DEM was used to assess the effect of noise on the DEM and misregistration between the DEM and the satellite imagery. Correlation analysis, spectral comparison between sunlit and shaded slopes and a support vector machine (SVM) classification were performed to assess the effect of the revised radiometric correction algorithm. Results indicate that the revised physical model with smoothed DEM is more adequate for forested terrain and more consistent spectra for similar vegetation under different illuminations can be obtained. Finally, higher classification accuracy of forested land can be achieved with the revised correction algorithm compared with the SCS correction and the original physical correction model.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Division of Ecosystem Science, University of California, Berkeley, USA 2:

Publication date: October 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more