Skip to main content
padlock icon - secure page this page is secure

Sediment facies classification of a sandy shoreline by means of airborne imaging spectroscopy

Buy Article:

$61.00 + tax (Refund Policy)

Airborne imaging spectroscopy data (AISA Eagle and HyMap) were applied to classify the sediments of a sandy beach in seven sand type classes. On the AISA-Eagle data, several classification strategies were tried out and compared with each other. The best classification results were obtained applying a linear discriminant classifier (LDC) in combination with feature selection based on sequential floating forward search (SFFS). The statistical LDC was used in a multiple binary approach. In the first step, the original bands were used in the classification, but transformation of the bands to wavelet coefficients enhanced the accuracy obtained. The combination of LDC with SFFS resulted in an overall accuracy of 82% (using three wavelet coefficients). Replacing the LDC with the non-statistical SAM algorithm reduced the overall accuracy to 74% (using all bands or wavelet coefficients). When applying LDC, the optimal number of bands/wavelet coefficients to be used was defined: using more than two bands or three wavelet coefficients did not result in a higher classification accuracy. Finally, the HyMap data, featuring 126 bands in the VNIR-SWIR range, were used to demonstrate that the VNIR range outperforms the SWIR range for this application.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Remote Sensing and Earth Observation Processes (TAP), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400-Mol, Belgium 2: Renard Centre of Marine Geology, Ghent University, Krijgslaan 281-S8, 9000-Gent, Belgium

Publication date: January 1, 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more