Skip to main content
padlock icon - secure page this page is secure

Segmentation and morphology of open water bodies from multispectral images

Buy Article:

$61.00 + tax (Refund Policy)

A number of problems in remote sensing require the segmentation of specific spectral classes such as water bodies, clouds or forested areas. Further analysis of these classes may include the calculation of optical reflectance values such as chlorophyll concentration, absolute reflectivity or vegetation indices. To derive reliable measurements of these variables, a precise segmentation − from the rest of the image − of the spectral classes is needed. In this work, we propose a new methodology to segment open water bodies based on a variant of principal component analysis (PCA). In this variant, information about the spectral class model of the water bodies to be separated in the feature space is required. This information is input by means of a training field encircling a set of pixels representative of this spectral model. A training field for land cover is also defined. This PCA variant produces two sets of multispectral bands, one for water bodies and one for land cover types. The first two bands of each set are input into a fuzzy clustering procedure. By using a merging process, the clusters are merged into two classes: water bodies and the rest of the image. From this, a logic bitmap image is obtained. The pixels of the bitmap consist of ON for water bodies and OFF for the rest of the image. The bitmap is then used to obtain morphological parameters of the water bodies.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Instituto de Geofísica‐UNAM, Circuito Institutos, Cd. Universitaria, 04510 México DF, Mexico

Publication date: September 20, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more