Skip to main content
padlock icon - secure page this page is secure

Measurement of uncertainty by the entropy: application to the classification of MSS data

Buy Article:

$61.00 + tax (Refund Policy)

Uncertainty is imposed simultaneously with multispectral data acquisition in remote sensing. It grows and propagates in processing, transmitting and classification processes. This uncertainty affects the extracted information quality. Usually, the classification performance is evaluated by criteria such as the accuracy and reliability. These criteria can not show the exact quality and certainty of the classification results. Unlike the correctness, no special criterion has been propounded for evaluation of the certainty and uncertainty of the classification results. Some criteria such as RMSE, which are used for this purpose, are sensitive to error variations instead of uncertainty variations. This study proposes the entropy, as a special criterion for visualizing and evaluating the uncertainty of the results. This paper follows the uncertainty problem in multispectral data classification process. In addition to entropy, several uncertainty criteria are introduced and applied in order to evaluate the classification performance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Electrical Engineering, Tarbiat Modaress University, Tehran, Iran

Publication date: September 20, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more