Skip to main content
padlock icon - secure page this page is secure

PAN‐sharpening of very high resolution multispectral images using genetic algorithms

Buy Article:

$60.00 + tax (Refund Policy)

A novel image fusion method is presented, suitable for sharpening of multispectral (MS) images by means of a panchromatic (PAN) observation. The method is based on redundant multiresolution analysis (MRA); the MS bands expanded to the finer scale of the PAN band are sharpened by adding the spatial details from the MRA representation of the PAN data. As a direct, unconditioned injection of PAN details gives unsatisfactory results, a new injection model is proposed that provides the optimum injection by maximizing a global quality index of the fused product. To this aim, a real‐valued genetic algorithm (GA) has been defined and tested on Quickbird data. The optimum GA injection is driven by an index function capable of measuring different types of possible distortions in the fused images. Fusion tests are carried out on spatially degraded data to objectively compare the proposed scheme to the most promising state‐of‐the‐art image fusion methods, and on full‐resolution image data to visually assess the performance of the proposed genetic image fusion method.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Information Engineering, University of Siena, Via Roma 56, 53100 Siena, Italy

Publication date: August 10, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more