Skip to main content
padlock icon - secure page this page is secure

Land‐cover mixing and spectral vegetation indices

Buy Article:

$60.00 + tax (Refund Policy)

Vegetation indices have been widely used as indicators of seasonal and inter‐annual variations in vegetation caused by either human activities or climate, with the overall goal of observing and documenting changes in the Earth system. While existing satellite remote sensing systems, such as NASA's Multi‐angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS), are providing improved vegetation index data products through correcting for the distortions in surface reflectance caused by atmospheric particles as well as ground covers below vegetation canopy, the impact of land‐cover mixing on vegetation indices has not been fully addressed. In this study, based on real image spectral samples for two‐component mixtures of forest and common nonforest land‐cover types directly extracted from a 1.1km MISR image by referencing a 30m land‐cover classification, the effect of land‐cover mixing on the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) has been quantitatively evaluated. When the areal fraction of forest was lower than 80%, both NDVI and EVI varied greatly with mixed land‐cover types, although EVI varied less than NDVI. Such a phenomenon can cause errors in applications based on use of these vegetation indices. This study suggests that methods that reduce land‐cover mixing effects should be introduced when developing new spectral vegetation indices.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Center for Earth Observing and Space Research, George Mason University, 4400 University Drive, Fairfax, VA 22030‐4444, USA

Publication date: August 10, 2005

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more