Skip to main content
padlock icon - secure page this page is secure

Crop yield estimation by satellite remote sensing

Buy Article:

$55.00 + tax (Refund Policy)

Two methods for estimating the yield of different crops in Hungary from satellite remote sensing data are presented. The steps of preprocessing the remote sensing data (for geometric, radiometric, atmospheric and cloud scattering correction) are described. In the first method developed for field level estimation, reference crop fields were selected by using Landsat Thematic Mapper (TM) data for classification. A new vegetation index (General Yield Unified Reference Index (GYURI)) was deduced using a fitted double-Gaussian curve to the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data during the vegetation period. The correlation between GYURI and the field level yield data for corn for three years was R2=0.75. The county-average yield data showed higher correlation (R2=0.93). A significant distortion from the model gave information of the possible stress of the field. The second method presented uses only NOAA AVHRR and officially reported county-level yield data. The county-level yield data and the deduced vegetation index, GYURRI, were investigated for eight different crops for eight years. The obtained correlation was high (R2=84.6-87.2). The developed robust method proved to be stable and accurate for operational use for county-, region- and country-level yield estimation. The method is simple and inexpensive for application in developing countries, too.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Eötvös University Department of Environmental Physics, and MTA-ELTE Research Group for Geoinformatics and Space Sciences Pázmány P. sétány 1/A H-1117 Budapest Hungary, Email: [email protected] 2: Space Research Group, Geophysical Department Eötvös University Pázmány P. sétány 1/A H-1117 Budapest Hungary 3: MTA-ELTE Research Group for Geoinformatics and Space Sciences Pázmány P. sétány 1/A H-1117 Budapest Hungary

Publication date: 01 October 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more