Skip to main content
padlock icon - secure page this page is secure

A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images

Buy Article:

$60.00 + tax (Refund Policy)

A hybrid method that incorporates the advantages of supervised and unsupervised approaches as well as hard and soft classifications was proposed for mapping the land use/cover of the Atlanta metropolitan area using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. The unsupervised ISODATA clustering method was initially used to segment the image into a large number of clusters of pixels. With reference to ground data based on 1 : 40 000 colour infrared aerial photographs in the form of Digital Orthophoto Quarter Quadrangle (DOQQ), homogeneous clusters were labelled. Clusters that could not be labelled because of mixed pixels were clipped out and subjected to a supervised fuzzy classification. A final land use/cover map was obtained by a union overlay of the two partial land use/cover maps. This map was evaluated by comparing with maps produced using unsupervised ISODATA clustering, supervised fuzzy and supervised maximum likelihood classification methods. It was found that the hybrid approach was slightly better than the unsupervised ISODATA clustering in land use/cover classification accuracy, most probably because of the supervised fuzzy classification, which effectively dealt with the mixed pixel problem in the low-density urban use category of land use/cover. It was suggested that this hybrid approach can be economically implemented in a standard image processing software package to produce land use/cover maps with higher accuracy from satellite images of moderate spatial resolution in a complex urban environment, where both discrete and continuous land cover elements occur side by side.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Geography University of Georgia Athens GA 30602 USA

Publication date: July 1, 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more