Skip to main content
padlock icon - secure page this page is secure

The use of backpropagating artificial neural networks in land cover classification

Buy Article:

$61.00 + tax (Refund Policy)

Artificial neural networks (ANNs) are used for land cover classification using remotely sensed data. Training of a neural network requires that the user specifies the network structure and sets the learning parameters. In this study, the optimum design of ANNs for classification problems is investigated. Heuristics proposed by a number of researchers to determine the optimum values of network parameters are compared using two datasets. Those heuristics that produce the highest classification accuracies are tested using two independent datasets. Comparisons are also made among the ANNs designed using optimum settings, the ANNs based on the worst performing heuristics, and the maximum likelihood classifier. Results show that the use of ANNs with the settings recommended in this study can produce higher classification accuracies than either alternative. A number of guidelines are constructed from the experiences of this study for the effective design and use of artificial neural networks in the classification of remotely sensed image data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Gebze Institute of Technology Cayirova Campus Fabrikalar Yolu, No. 101, P.K. 141 41400, Gebze/Kocaeli Turkey 2: School of Geography The University of Nottingham Nottingham NG7 2RD UK

Publication date: December 1, 2003

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more