
Supervised classification of remotely sensed data with ongoing learning capability
A methodology to implement an automatic system for classifying remotely sensed data with an ongoing learning capability is introduced. The Nearest Neighbour (NN) rule is employed as the central classifier and several techniques are added to cope with the increase in computational load and with the risk of incorporating noisy data into the training sample. Experimental results confirm the enhancement in classification accuracy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Document Type: Research Article
Publication date: November 21, 2002
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites