Skip to main content
padlock icon - secure page this page is secure

Determination of integrated cloud liquid water path and total precipitable water from SSM/I data using a neural network algorithm

Buy Article:

$60.00 + tax (Refund Policy)

A new algorithm is developed whereby the cloud Liquid Water Path (LWP) and the Total Precipitable Water (TPW) may be determined from SSM/I microwave radiometric data. An artificial Neural Network (NN) with a five-neuron single hidden layer with five neurons yields the best results. The NN algorithm for TPW and LWP is compared with log-linear regression algorithms developed on the same database. The results obtained on the simulated dataset are nearly twice as good with this new algorithm. In particular, this NN seems to be able to give a better fit for large values of LWP. Furthermore, in the case of TPW, a validation and comparison with conventional algorithms is presented, which is based on SSM/I measurements and collocated radiosonde observations (RAOBs). The main conclusion is that the NN algorithm is more regular than most of the other algorithms. Through this particular study, we try to elaborate a general methodology. The conclusions concern the variability of the database used to develop and test retrieval algorithms and the relevant parameters to characterize the performance of an algorithm.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 25, 2002

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more