Skip to main content
padlock icon - secure page this page is secure

Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan

Buy Article:

$60.00 + tax (Refund Policy)

Nine scenes of SPOT/HRV data obtained in eight different months in 1997 were evaluated for crop discrimination in the Saga Plains, Japan. All images were atmospherically corrected with the 6S code. Annual Normalized Difference Vegetation Index (NDVI) profiles were generated to characterize seasonal trends in six cropping systems (rice, rice-winter cereal, soybean, soybean-winter cereal, lotus, and rush). The dataset of this study showed the unique temporal change patterns of NDVI for each cropping system. Separability analyses determined optimal scene combinations for the highest accuracy in classifying the cropping systems. The scene combinations for the accurate classification of cropping systems were obtained from three separability measurements (Euclidean spectral distance, divergence, and Jeffries-Matsushita distance). Kappa statistics were applied to evaluate the classification accuracies. The four-scene combination that was derived from April, June, July and September classified the cropping systems almost as well as those combinations including more scenes. A colour composition technique applied to the three-scene combination that showed the highest separability also discriminated each cropping system. Based on these results, we can request observations during specific time intervals considering local crop calendars and environmental conditions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Remote Sensing Research Unit, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8604, Japan

Publication date: May 20, 2001

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more