Skip to main content
padlock icon - secure page this page is secure

An improved lidar method for monitoring surface waters: experiments in the laboratory

Buy Article:

$60.00 + tax (Refund Policy)

Abstract. Lidar monitoring of surface waters is usually applied to fluorescent substances like phytoplankton, yellow substances and oil. A lidar method is introduced which allows the measuring of the total attenuation coefficient at the laser wavelength considering also nonfluorescent substances besides fluorescent ones. Two signals are measured: first the total fluorescence lidar signal L, which is characterized by long path-lengths of the laser radiation in the water column, and second, the fluorescence F, which originates from the first layers immediately below the water surface. A simple experiment in the laboratory was performed using a nitrogen laser. Water samples containing algae and varying amounts of humic and ligninesulfonic acids were investigated. Synchronously the attenuation coefficients were measured. The F/L ratio yielded the total attenuation at the laser wavelength. Good correlations between the conventional and the lidar-derived attenuation coefficients were achieved described by squared correlation coefficients of R2 > 0.95. The F/L ratio seems to be a good tool in lidar monitoring of waters.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 20, 1997

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more