Skip to main content
padlock icon - secure page this page is secure

Symmetry and invariance

Buy Article:

$61.00 + tax (Refund Policy)

The concept of invariance relates to both the intrinsic symmetries of physical systems and the symmetry of the set of equivalent reference frames used to observe them. Standard algebraic expressions for electrostatic potentials and crystal-field effective operators display both types of invariance. The concept of a reference frame is generalized to that of an 'observing system', which can, for example, be the basis states of a quantum system. This idea is related to Racah's mathematical machinery for evaluating the matrix elements of many-electron 4f open-shell states in lanthanide ions. It is argued, on the basis of computational flexibility and ease of interpretation, that all equations that represent physical processes be expressible in terms of invariants of the set of observing systems. This 'Principle of Invariance' is then applied to special relativity, leading to a simple geometrical interpretation of Maxwell's electromagnetic field equations. The close relationship between Dirac's relativistic wave equation and Maxwell's equations is then exposed. This leads to the concept of an inner structure of space-time and the reinterpretation of particle spin. Finally, it is shown that the use of invariants in relativity theory identifies a set of observing systems with a higher symmetry than that of Minkowski space-time.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 10, 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more