Skip to main content
padlock icon - secure page this page is secure

A cavity-QED scheme for Heisenberg-limited interferometry

Buy Article:

$61.00 + tax (Refund Policy)

We propose a Ramsey interferometry experiment using an entangled state of N atoms to approach the Heisenberg limit for the estimation of an atomic phase shift if the atom number parity is perfectly determined. In a more realistic situation, due to statistical fluctuations of the atom source and the finite detection efficiency, the parity is unknown. We then achieve about half the Heisenberg limit. The scheme involves an ensemble of circular Rydberg atoms which dispersively interact successively with two initially empty microwave cavities. The scheme does not require very high-Q cavities. An experimental realization with about ten entangled Rydberg atoms is achievable with a state of art apparatus.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (MC), Italy 2: Laboratoire Kastler Brossel, Département de Physique de l'Ecole Normale Supérieure, France

Publication date: July 1, 2007

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more