Skip to main content
padlock icon - secure page this page is secure

Back‐flow and flow‐alignment in pulsatile flows of Leslie–Ericksen liquid crystals

Buy Article:

$55.00 + tax (Refund Policy)

Analytical solutions to the capillary pulsatile flow of Leslie–Ericksen liquid crystals under small pressure drops are presented, when the imposed small pressure drop contains a steady and a time‐periodic contribution. The results show that pulsatile flows initiate periodic back‐flows (reorientation‐induced flow) which are directly linked to flow‐alignment characteristics of the material. The experimentally measurable power requirement (flow rateƗpressure drop) is shown to be well suited to quantify back‐flows and flow‐alignment material properties. The analysis reveals that power requirements deviate from the Newtonian limit when the frequency of the oscillating pressure drop is close to the splay orientation diffusivity, and backflows become significant. In the terminal zone (small frequencies) the response is Newtonian and the power requirement is a quadratic function of amplitude. At large frequencies, the amplitude of back‐flow effects saturates and the power requirement is proportional to the square of the alignment viscosity coefficient α 3 . An experimental procedure to measure the flow‐alignment viscosity coefficient α 3 is formulated, based on large frequency measurements, and a formula derived from the close‐form solution to the Leslie–Ericksen equations for capillary pulsatile flows.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, Canada H3A 2B2

Publication date: 01 June 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more