Skip to main content
padlock icon - secure page this page is secure

L'idée de la logique formelle dans les appendices VI à X du volume 12 des Husserliana (1970)

Buy Article:

$53.00 + tax (Refund Policy)

Au terme des Prolégomènes (1900), Husserl formule son idée de la logique pure en la structurant sur deux niveaux: l'un, supérieur, de la logique formelle fondé transcendantalement et d'un point de vue épistémologique par l'autre, inférieur, d'une morphologie des catégories. Seul le second de ces deux niveaux est traité dans les Recherches logiques (1901), tandis que les travaux théoriques en logique formelle menés par Husserl à la même époque en paraissent plutôt indépendants. Cet article est consacré à ces travaux tels que recueillis dans les appendices VI-X du volume 12 des Husserliana (1970a). Mettant en évidence la théorie de la signification qui les sous-tend par le biais d'une analyse de la question dite de l'extension des systèmes d'axiomes et de sa résolution au moyen d'une notion de complétude, son objectif est d'expliciter les modalités de l'intégration de la logique formelle dans l'idée husserlienne de la logique pure au tournant du xx siècle.

When formulating his idea of pure logic in the Prolegomena [Husserl, E. 1900. Logische Untersuchungen. T. I : Prolegomena zur reinen Logik, Halle: Niemeyer. Éd. fr.: Husserl 1959; chap. XI], Husserl configures it on two levels: the superior one of formal logic, concerned with the axiomatization of mathematical structures; the inferior one of transcendantal logic grounding the former from an epistemological standpoint (i.e. as a science and in terms of theory of knowledge). Nevertheless, only the latter is taken into consideration in the Logical Investigations [Husserl, E. 1901. Logische Untersuchungen. T. II: Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, Halle: Niemeyer. Éd. fr.: Husserl 1961/1963], while the theoretical work on formal logic that Husserl conducted at the same time seems at first glance rather independent. This paper is about that work as collected in the appendices VI–X to Husserliana 12 [Husserl, E. 1970a. Philosophie der Arithmetik. Mit ergänzenden Texten (1890–1901). Sous la dir. de Lothar Eley. (Husserliana 12). Den Haag: Nijhoff. Éd. orig.: Husserl 1972a, 1975]. And it aims at explicating how Husserl's conception formal logic fits in with his idea of pure logic. After an introductive recall about the young Husserl's evolution (Section 1), such a goal is reached here in three steps: first, by a presentation of Husserl's setting up of formal logic in 1900–1901 revolving around systems of axioms and formal domains with a focus on their linkage (Section 2); then, by the formulation of the question dealing with that very linkage, that is, the question of the extension of systems of axioms based on the so-called ‘problem of imaginary in mathematics’ focusing Husserl's theoretical research on formal logic at that time (Section 3); finally, by an analysis of Husserl's solution to those problem and question via his notion of definiteness of systems of axioms and his conception of their completeness (Section 4). Realized from a historico-epistemological perspective, that systematic reconstruction highlights the theory meaning underlying Husserl's conception of formal logic and according to which, precisely, that latter integrates his idea of pure logic at the turn of the twentieth century (Section 5).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Paris Diderot University, France

Publication date: October 2, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more