Skip to main content
padlock icon - secure page this page is secure

Aristotle's Syllogistic and Core Logic

Buy Article:

$54.00 + tax (Refund Policy)

I use the Corcoran–Smiley interpretation of Aristotle's syllogistic as my starting point for an examination of the syllogistic from the vantage point of modern proof theory. I aim to show that fresh logical insights are afforded by a proof-theoretically more systematic account of all four figures. First I regiment the syllogisms in the Gentzen–Prawitz system of natural deduction, using the universal and existential quantifiers of standard first-order logic, and the usual formalizations of Aristotle's sentence-forms. I explain how the syllogistic is a fragment of my (constructive and relevant) system of Core Logic. Then I introduce my main innovation: the use of binary quantifiers, governed by introduction and elimination rules. The syllogisms in all four figures are re-proved in the binary system, and are thereby revealed as all on a par with each other. I conclude with some comments and results about grammatical generativity, ecthesis, perfect validity, skeletal validity and Aristotle's chain principle.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: The Ohio State University, USA

Publication date: April 3, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more