Skip to main content
padlock icon - secure page this page is secure

Frege's Approach to the Foundations of Analysis (1874–1903)

Buy Article:

$54.00 + tax (Refund Policy)

The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ‘theory of quantity’ (‘Größenlehre’) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section 2, I first analyze Frege's use of the term ‘source of knowledge’ (‘Erkenntnisquelle’) with particular emphasis on the logical source of knowledge. The analysis includes a brief comparison between Frege and Kant's conceptions of logic and the logical source of knowledge. In a second step, I examine Frege's theory of quantity in Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen (Frege 1874). Section 3 contains a couple of critical observations on Frege's comments on Hankel's theory of real numbers in Die Grundlagen der Arithmetik (Frege 1884). In Section 4, I consider Frege's discussion of the concept of quantity in Frege 1903. Section 5 is devoted to Cantor's theory of irrational numbers and the critique deployed by Frege. In Section 6, I return to Frege's own constructive treatment of analysis in Frege 1903 and succinctly describe what I take to be the quintessence of his account.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Munich Center for Mathematical Philosophy, Universität München, Ludwigstr. 31 80539, München, Germany

Publication date: August 1, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more