Skip to main content
padlock icon - secure page this page is secure

Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN

Buy Article:

$60.00 + tax (Refund Policy)

The density-based spatial clustering of applications with noise (DBSCAN) method is often used to identify individual activity clusters (i.e., zones) using digital footprints captured from social networks. However, DBSCAN is sensitive to the two parameters, eps and minpts. This paper introduces an improved density-based clustering algorithm, Multi-Scaled DBSCAN (M-DBSCAN), to mitigate the detection uncertainty of clusters produced by DBSCAN at different scales of density and cluster size. M-DBSCAN iteratively calibrates suitable local eps and minpts values instead of using one global parameter setting as DBSCAN for detecting clusters of varying densities, and proves to be effective for detecting potential activity zones. Besides, M-DBSCAN can significantly reduce the noise ratio by identifying all points capturing the activities performed in each zone. Using the historic geo-tagged tweets of users in Washington, D.C. and in Madison, Wisconsin, the results reveal that: 1) M-DBSCAN can capture dispersed clusters with low density of points, and therefore detecting more activity zones for each user; 2) A value of 40 m or higher should be used for eps to reduce the possibility of collapsing distinctive activity zones; and 3) A value between 200 and 300 m is recommended for eps while using DBSCAN for detecting activity zones.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Activity zones; Twitter; human mobility; social networks; spatial clustering

Document Type: Research Article

Affiliations: Department of Geography, University of Wisconsin-Madison, Madison, WI, USA

Publication date: June 3, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more