Skip to main content
padlock icon - secure page this page is secure

Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain

Buy Article:

$61.00 + tax (Refund Policy)

Mineral exploration activities require robust predictive models that result in accurate mapping of the probability that mineral deposits can be found at a certain location. Random forest (RF) is a powerful machine data-driven predictive method that is unknown in mineral potential mapping. In this paper, performance of RF regression for the likelihood of gold deposits in the Rodalquilar mining district is explored. The RF model was developed using a comprehensive exploration GIS database composed of: gravimetric and magnetic survey, a lithogeochemical survey of 59 elements, lithology and fracture maps, a Landsat 5 Thematic Mapper image and gold occurrence locations. The results of this study indicate that the use of RF for the integration of large multisource data sets used in mineral exploration and for prediction of mineral deposit occurrences offers several advantages over existing methods. Key advantages of RF include: (1) the simplicity of parameter setting; (2) an internal unbiased estimate of the prediction error; (3) the ability to handle complex data of different statistical distributions, responding to nonlinear relationships between variables; (4) the capability to use categorical predictors; and (5) the capability to determine variable importance. Additionally, variables that RF identified as most important coincide with well-known geologic expectations. To validate and assess the effectiveness of the RF method, gold prospectivity maps are also prepared using the logistic regression (LR) method. Statistical measures of map quality indicate that the RF method performs better than LR, with mean square errors equal to 0.12 and 0.19, respectively. The efficiency of RF is also better, achieving an optimum success rate when half of the area predicted by LR is considered.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: data-driven models; mineral exploration; mineral potential mapping; mineral prospectivity; random forest

Document Type: Research Article

Affiliations: 1: Departamento de Geodinámica, Universidad de Granada, Granada, Spain 2: Departamento de Análisis Matemático, Universidad de Granada, Granada, Spain

Publication date: July 3, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more