Skip to main content
padlock icon - secure page this page is secure

Incorporating activity-travel time uncertainty and stochastic space–time prisms in multistate supernetworks for activity-travel scheduling

Buy Article:

$60.00 + tax (Refund Policy)

Multistate supernetwork approach has been advanced recently to study multimodal, multi-activity travel behavior. The approach allows simultaneously modeling multiple choice facets pertaining to activity-travel scheduling behavior, subject to space–time constraints, in the context of full daily activity-travel patterns. In that sense, multistate supernetworks offer an alternative to constraints-based time-geographic activity-based models. To date, most research on time-geographic models and supernetworks alike has represented time and space in a deterministic fashion. To enhance the validity and realism of the scheduling process and the underlying space–time decisions, this paper pioneers incorporating time uncertainty in multistate supernetworks for activity-travel scheduling. Solutions based on the concept of the [Inline formula]-shortest path are proposed to find the reliable activity-travel pattern with [Inline formula] confidence level. An algorithm combining label correcting and Monte-Carlo integration is proposed to finding the[Inline formula]-shortest paths in the presence of time window constraints. An example of a typical daily activity program is executed to demonstrate the applicability of the proposed extension.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Monte-Carlo integration; [Inline formula]-shortest path; multistate supernetworks; space–time constraints; uncertainty

Document Type: Research Article

Affiliations: Urban Planning Group, Eindhoven University of Technology, Eindhoven, Noord-Brabant, The Netherlands

Publication date: May 4, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more