Skip to main content
padlock icon - secure page this page is secure

A linear road object matching method for conflation based on optimization and logistic regression

Buy Article:

$61.00 + tax (Refund Policy)

The purpose of object matching in conflation is to identify corresponding objects in different data sets that represent the same real-world entity. This article presents an improved linear object matching approach, named the optimization and iterative logistic regression matching (OILRM) method, which combines the optimization model and logistic regression model to obtain a better matching result by detecting incorrect matches and missed matches that are included in the result obtained from the optimization (Opt) method for object matching in conflation. The implementation of the proposed OILRM method was demonstrated in a comprehensive case study of Shanghai, China. The experimental results showed the following. (1) The Opt method can determine most of the optimal one-to-one matching pairs under the condition of minimizing the total distance of all matching pairs without setting empirical thresholds. However, the matching accuracy and recall need to be further improved. (2) The proposed OILRM method can detect incorrect matches and missed matches and resolve the issues of one-to-many and many-to-many matching relationships with a higher matching recall. (3) In the case where the source data sets become more complicated, the matching accuracy and recall based on the proposed OILRM method are much better than those based on the Opt method.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: conflation; geospatial data; logistic regression; matching; optimization

Document Type: Research Article

Affiliations: College of Surveying and Geo-informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China

Publication date: April 3, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more