Skip to main content
padlock icon - secure page this page is secure

Toward 3D spatial dynamic field simulation within GIS using kinetic Voronoi diagram and Delaunay tetrahedralization

Buy Article:

$60.00 + tax (Refund Policy)

Geographic information systems (GISs) are widely used for representation, management, and analysis of spatial data in many disciplines. In particular, geoscientists increasingly use these tools for data integration and management purposes in many environmental applications, ranging from water resources management to the study of global warming. Beyond these capabilities, geoscientists need to model and simulate three-dimensional (3D) dynamic fields and readily integrate those results with other relevant spatial information in order to have a better understanding of the environmental problems. However, GISs are very limited for the modeling and simulation of spatial fields, which are mostly 3D and dynamic. These limitations are mainly related to the existing GIS spatial data structures that are static and limited to 2D space. In order to overcome these limitations, we develop and implement a new kinetic 3D spatial data structure based on Delaunay tetrahedralization and a 3D Voronoi diagram to support a 3D dynamic field simulation within GISs. In this article, we describe in detail the different steps from discretization of a 3D continuous field to its numerical integration, based on an event-driven method. For validation of the proposed spatial data structure itself and its potential for the simulation of a dynamic field, two case studies are presented in the article. According to our observations, during the simulation process, the data structure is maintained and the 3D spatial information is managed adequately. Furthermore, the results obtained from both experiments are very satisfactory and are comparable with the results obtained from other existing methods for the simulation of the same dynamic field. To conclude, we discuss the current challenges related to the development of the 3D kinetic data structure itself and its adaptation to 3D dynamic field simulation and suggest some solutions for its improvement.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 3D dynamic field; Voronoi and Delaunay data structures; integrating PDEs and GIS; kinetic tessellation; modeling and simulation

Document Type: Research Article

Affiliations: 1: Department of Geomatics, Laval University, Quebec, QC, Canada 2: Department of Computer Science, University of Calgary, Calgary, AB, Canada

Publication date: February 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more