Skip to main content
padlock icon - secure page this page is secure

Interactive visualization of multi-resolution urban building models considering spatial cognition

Buy Article:

$61.00 + tax (Refund Policy)

Multi-resolution visualization of massive urban buildings is one of the most important components for a cyber city. Urban is a highly humanized system, and thus visualizing urban buildings needs to abide by people's habits of cognizing spatial relations between objects for their accurate and quick understanding of urban spatial information. This article proposes an approach to generalize and render urban building models in the context of Gestalt psychology and urban legibility. We introduce a new distance measurement method as the distance metric for the single-link clustering algorithm, which is used to group building footprints into clusters. Each cluster is merged based on the Delaunay triangulation and the polyline generalization algorithm. We then construct a hierarchical tree to store multi-resolution building models and implement interactive three-dimensional visualization of large-scale and high-density urban buildings. Experimental results indicate that the proposed methodology not only reduces the geometric complexity of urban models but also preserves urban legibility successfully and follow Gestalt principles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: LOD; hierarchical tree; massive urban models; spatial cognition

Document Type: Research Article

Affiliations: 1: 2: PTV America, Inc., Tacoma, WA, USA

Publication date: February 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more