Skip to main content
padlock icon - secure page this page is secure

Error assessment of grid-based flow routing algorithms used in hydrological models

Buy Article:

$60.00 + tax (Refund Policy)

This paper reports an investigation on the accuracy of grid-based routing algorithms used in hydrological models. A quantitative methodology has been developed for objective and data-independent assessment of errors generated from the algorithms that extract hydrological parameters from gridded DEM. The generic approach is to use artificial surfaces that can be described by a mathematical model, thus the 'true' output value can be pre-determined to avoid uncertainty caused by uncontrollable data errors. Four mathematical surfaces based on an ellipsoid (representing convex slopes), an inverse ellipsoid (representing concave slopes), saddle and plane were generated and the theoretical 'true' value of the Specific Catchment Area (SCA) at any given point on the surfaces could be computed using mathematical inference. Based on these models, tests were made on a number of algorithms for SCA computation. The actual output values from these algorithms on the convex, concave, saddle and plane surfaces were compared with the theoretical 'true' values, and the errors were then analysed statistically. The strengths and weaknesses of the selected algorithms are also discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: December 1, 2002

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more