Skip to main content
padlock icon - secure page this page is secure

Detecting outliers in irregularly distributed spatial data sets by locally adaptive and robust statistical analysis and GIS

Buy Article:

$60.00 + tax (Refund Policy)

In this paper, we propose a new method for detecting outliers in an irregularly distributed spatial data set. Our method has two desirable properties. First, it is functionally effective due to the introduction of sensitive outlier indices and locally adaptive and robust statistical criteria. Second, it is computationally efficient because of the use of super-block based spatial data sorting and searching scheme. Our method has been implemented using the C programming language and integrated with the Arc/Info GIS system. The integration leads to a powerful exploratory data analysis tool for checking and analysing anomalous values in a GIS environment. Local outliers can be automatically labeled with our method, subject to some user-defined parameters. Outliers represent anomalous or suspicious values in a statistical sense, which may not necessarily be erroneous values. Instead of being simply discarded, statistical outliers should be investigated further using prior qualitative knowledge or in association with other GIS data layers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: December 1, 2001

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more