Skip to main content
padlock icon - secure page this page is secure

Migration of model contaminants from PET bottles: influence of temperature, food simulant and functional barrier

Buy Article:

$63.00 + tax (Refund Policy)

To simulate post-consumer recycled plastics, selected model contaminants were incorporated into PET bottles using a time saving method. Migration into 3% acetic acid, a cola-type beverage and 95% ethanol was followed during 1 year of storage at 20 and 40°C. Aroma compounds previously found in post-consumer PET material were used as model contaminants. Benzaldehyde was found to migrate to the highest extent. Storage at 40°C affected the bottle material and this might be one reason for the high migration values of these bottles. Migration into ethanol was up to 20 times higher than into 3% acetic acid or a cola-type beverage. Bottles with a functional barrier resisted migration into food simulants even when filled with 95% ethanol and stored for 1 year at 40°C. Differential scanning calorimetry measurements showed that ethanol was interacting with the plastic material. This resulted in a lower glass transition temperature of bottles stored with ethanol compared with bottles stored empty or with other food simulants.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: food packaging; functional barrier; migration; model contaminants; poly-(ethylene tetraphthalate) (PET); recycling plastics

Document Type: Research Article

Publication date: October 1, 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more