Skip to main content
padlock icon - secure page this page is secure

Frequency-dependence of discomfort caused by vibration and mechanical shocks

Buy Article:

$61.00 + tax (Refund Policy)

The frequency content of a mechanical shock is not confined to its fundamental frequency, so it was hypothesised that the frequency-dependence of discomfort caused by shocks with defined fundamental frequencies will differ from the frequency-dependence of sinusoidal vibration. Subjects experienced vertical vibration and vertical shocks with fundamental frequencies from 0.5 to 16 Hz and magnitudes from ±0.7 to ±9.5 ms–2. The rate of growth of discomfort with increasing magnitude of motion decreased with increasing frequency of both motions, so the frequency-dependence of discomfort varied with the magnitudes of both motions and no single frequency weighting will be ideal for all magnitudes. At the frequencies of sinusoidal vibration producing greatest discomfort (4–16 Hz), shocks produced less discomfort than vibration with same peak acceleration or unweighted vibration dose value. Frequency-weighted vibration dose values provided the best predictions of the discomfort caused by different frequencies and magnitudes of vibration and shock.

Practitioner Summary: Human responses to vibration and shock vary according to the frequency content of the motion. The ideal frequency weighting depends on the magnitude of the motion. Standardised frequency-weighted vibration dose values estimate discomfort caused by vibration and shock but for motions containing very low frequencies the filtering is not optimum.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Vibration comfort; frequency weightings; mechanical shocks; vibration standards; whole-body vibration

Document Type: Research Article

Affiliations: Human Factors Research Unit, Institute of Sound and Vibration Research, University of Southampton, Southampton, England

Publication date: August 3, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more