Skip to main content
padlock icon - secure page this page is secure

Carrying and spine loading

Buy Article:

$61.00 + tax (Refund Policy)

The advantages and disadvantages of different methods of carrying objects on spine loading are still not fully understood. Previous studies have either examined the effects of carrying using physiological measures or examined isolated spine segments using biomechanical models. Additionally, most studies have been restricted to only a small number of carrying conditions. Very few studies have attempted to examine the various factors influencing spine loading together. To improve understanding of interacting factors on carrying, this study assessed the lumbar spine loads of 16 subjects as they assumed six styles of carrying at two weight levels and two activity levels (walking vs. standing). Concurrent with each trial, a subject-specific biomechanical model was used to assess spine forces over the full lumbar spine. Most carrying methods in the trials resulted in relatively low levels of spine loading. Anterior/posterior (A/P) shear loading was the only spine-loading dimension that reached biomechanically meaningful levels. Two carrying conditions, with bins carried in front of the body, significantly increased A/P shear compared with other carrying styles. This increase appeared to be due to the greater moment arms occurring in these conditions. Many of the other carrying styles produced A/P shears that were similar to those observed when carrying nothing at all. Of all the tasks, the backpack carry characteristically produced especially low spine loads. The findings of the study suggest that to achieve optimal carrying in terms of spine loading, loads should be positioned close to the body, even when carrying relatively light loads.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: carry; low back disorders; manual materials handling; spine biomechanics

Document Type: Research Article

Affiliations: 1: Biodynamics Laboratory, The Ohio State University, Columbus, OH,43210, USA 2: Department of Neurological Surgery, The Ohio State University, Columbus, OH,43210, USA

Publication date: November 1, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more