Skip to main content
padlock icon - secure page this page is secure

Heat stress in chemical protective clothing: porosity and vapour resistance

Buy Article:

$61.00 + tax (Refund Policy)

Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve protection, but questions are raised regarding their effect on heat strain. In this paper the use of selectively permeable membranes with low vapour resistance was compared to textile-based outer layers with similar ensemble vapour resistance. For textile-based outer layers, the effect of increasing air permeability was investigated. When comparing ensembles with a textile vs. a membrane outer layer that have similar heat and vapour resistances measured for the sum of fabric samples, a higher heat strain is observed in the membrane ensemble, as in actual wear, and the air permeability of the textile version improves ventilation and allows better cooling by sweat evaporation. For garments with identical thickness and static dry heat resistance, but differing levels of air permeability, a strong correlation of microclimate ventilation due to wind and movement with air permeability was observed. This was reflected in lower values of core and skin temperatures and heart rate for garments with higher air permeability. For heart rate and core temperature the two lowest and the two highest air permeabilities formed two distinct groups, but they did not differ within these groups. Based on protection requirements, it is concluded that air permeability increases can reduce heat strain levels allowing optimisation of chemical protective clothing. Statement of Relevance: In this study on chemical, biological, radiological and nuclear (CBRN) protective clothing, heat strain is shown to be significantly higher with selectively permeable membranes compared to air permeable ensembles. Optimisation of CBRN personal protective equipment needs to balance sufficient protection with reduced heat strain. Using selectively permeable membranes may optimise protection but requires thorough consideration of the wearer's heat strain.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: PPE; chemical protection; clothing; evaporative resistance; heat strain

Document Type: Research Article

Affiliations: 1: Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, Leics, UK 2: TNO, CBRN Protection, Rijswijk, The Netherlands 3: Forsvarets forskningsinstitutt, Norwegian Defence Research Establishment, Kjeller, Norway

Publication date: May 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more