Skip to main content
padlock icon - secure page this page is secure

Analysis of 3D face forms for proper sizing and CAD of spectacle frames

Buy Article:

$61.00 + tax (Refund Policy)

Three-dimensional morphological variations in the human face were analysed using digital models of the human face, and the usefulness of such analysis in designing industrial products was demonstrated by validating spectacle frame designs based on an original sizing system developed based on the analysis. A normalized model of the three-dimensional face form was made for each of 56 young adult Japanese males. The morphological distances between subjects were defined, and subjects were divided into four groups based on analysis of the distance matrix. A prototype spectacle frame was designed for the average form of each of the four groups. Tightening force of the prototype frames was adjusted using the materialized average forms with soft material placed at the nasal bridge and side of the head. Four prototype frames as well as a conventional frame were evaluated using sensory evaluation and physical measurement of the pressure and slip in 38 young adult male subjects. For each of the 38 subjects, prototype frames were ranked according to the morphological similarity of the subjects and the average form of the four groups: the frame designed for the average form of the group most similar to the subject was #1, the frame designed for the average form of the next most similar group was #2, and so on. For the groups with smaller or narrower faces, new frame #1 was most preferred and had the best overall fit, smallest slip sensation and largest pressure sensation. The groups with larger or wider faces preferred tighter frames than new frame #1, because they were concerned that the frames might slip, although the frames did not. Most of the subjects habitually wore spectacles, and the reason that groups with larger or wider faces preferred tighter frames was thought to be that they were accustomed to tighter fitting frames.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 3D shape measurement; Morphological fit; Sensory evaluation

Document Type: Research Article

Publication date: November 1, 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more