Skip to main content
padlock icon - secure page this page is secure

Open Access Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from a eutrophic lake

Download Article:
(PDF 335.9 kb)
Fourier-transform infrared (FTIR) spectroscopy was carried out on single colonies of Pediastrum duplex present in air-dried preparations of mixed phytoplankton samples isolated from a eutrophic freshwater lake. FTIR absorption spectra had 12 distinct bands over the wavenumber range 3300-900 cm−1 which were tentatively assigned to a range of chemical groups, including -OH (residual water, wavenumber 3299 cm−1), -CH2 (lipid, 2924), -C=O (cellulose, 1739), amide (protein, 1650 and 1542), >P=O (nucleic acid, 1077) and -C-O (starch, 1151 and 1077). Measurement of band areas identified residual water, protein and starch as the major detectable constituents. Areas of single bands and combined bands of -CH2, -C-O and >P=O species normalized to protein (to correct for differences in specimen hydration and thickness) showed wide variation between colonies, indicating environmental heterogeneity. Correlation analysis demonstrated close statistical associations between different molecular species. Particularly high levels of correlation between bands 3/4 (CH2), 6/7 (amide) and 8/9 (-CH3) was consistent with their joint origin from the same molecular species. The isolation of bands 11 and 12 in the correlation pattern was confirmed by factor analysis, suggesting that variation in the level of starch is statistically unrelated to other macromolecules being monitored. The use of FTIR spectroscopy to characterize an algal micro-population within mixed phytoplankton has potential for future studies on biodiversity and environmental interactions at the species level.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FTIR analysis; Pediastrum; green algae; molecular analysis; phytoplankton

Document Type: Research Article

Affiliations: 1: School of Biological Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK 2: CLRC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK

Publication date: 01 March 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more